Calculating the Field Emission Current from a Carbon Nanotube

نویسنده

  • P. von Allmen
چکیده

The purpose of this work is to present elements of a design tool for field emission displays using carbon nanotubes as emitters. We use a continuum model to describe the carbon nanotubes and we use a locally one-dimensional approximation to calculate the emission current. We investigate the emission current to voltage characteristic, screening effects and the lateral spread of the emission current as a function of the height and radius of the nanotube. We also present a set of results pertaining to the electrostatic properties of a carbon nanotube immersed in a uniform electric field. We show that the field enhancement factor at the apex of the nanotube increases linearly with the aspect ratio in the parameter region of interest to field emission applications. We have also found that the relative variation of the field enhancement factor along the cap of the nanotube only depends on the radius and not on the height of the nanotube.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2

Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...

متن کامل

Field Emission from Lateral Multiwalled Carbon Nanotube Yarn Emitters

A field emission from a lateral emitter made by a multiwalled carbon nanotube (MWCNT) yarn was investigated. The lateral emitter showed an excellent field emission performance with a low turn-on electric field of 1.13 V/μm at an emission current of 1 μA, high emission current of 0.2 mA at an applied voltage of 700 V, and longtime emission stability for over 20 h without any significant current ...

متن کامل

Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays

Strong, conducting, transparent carbon nanotube sheets were prepared by solid-state draw from well-ordered, aligned multiwalled carbon nanotube (MWCNT) forests [Zhang et al., 2005] [1]. Study of electron field emission from such transparent MWCNT sheets shows threshold fields of less than 0.5 V/lm with current densities high enough for display applications. Step-like field emission current incr...

متن کامل

A Sensitive Novel Approach towards the Detection of 8-Hydroxyquinoline at Anionic Surfactant Modified Carbon Nanotube Based Biosensor: A Voltammetric Study

A rapid electrochemical technique was developed to determine 8-Hydroxyquinoline (8HQ). In the current study, the anionic surfactant Sodium lauryl sulfate (SLS) was immobilized on the multi-walled carbon nanotube (MWCNT) paste surface for the fabrication of electrode to detect 8HQ in phosphate buffer solution (PBS) of pH 7.0. The response of SLS modified carbon nanotube paste electrode (SLSMCNTP...

متن کامل

Microscopic origin of current degradation of fully-sealed carbon-nanotube field emission display

The current-degradation mechanism of a fully sealed, carbon-nanotube field emission display is investigated experimentally and theoretically. From residual gas analysis, it is strongly evidenced that CH3 radicals from the organic materials in the paste deteriorate emission properties. Based on ab initio methods, it is found that CH3 radicals can increase electrical resistance of the nanotube an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001